Total No. of Printed Pages-6

2 SEM TDC PHY M 2

2012
(May)

PHYSICS
(Major)
Course : 201

(Thermal Physics and Waves and Oscillation)

$$
\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}
$$

Time : 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option :
(a) At very low temperatures, the coefficient of viscosity of a gas
(i) decreases with decrease of pressure
(ii) increases with increase of pressure
(iii) is independent of pressure
(iv) is equal to pressure
(b) The molecular density in a gas is n and diameter of its molecule is d, the mean free path of molecule is
(i) $\frac{\pi}{n d^{2}}$
(ii) $\frac{1}{\pi n d}$
(iii) $\frac{1}{\sqrt{2} \pi n d^{2}}$
(iv) $\frac{1}{3 \sqrt{2} \pi n d^{3}}$
(c) The temperature of inversion of a gas is given by
(i) $T_{i}=\frac{a}{R b}$
(ii) $T_{i}=\frac{2 a}{R b}$
(iii) $T_{i}=\frac{2 b}{a R}$
(iv) $T_{i}=\frac{2 a b}{R}$
(d) An ideal gas is heated from $20^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$ under constant pressure. The change in internal energy is
(i) zero
(ii) double the original value
(iii) proportional to change in volume
(iv) proportional
to change in temperature
(e) In a reversible cycle, the value of the integral $\oint \frac{d Q}{T}$ is
(i) $\oint \frac{d Q}{T}>0$
(ii) $\oint \frac{d Q}{T}<0$
(iii) $\oint \frac{d Q}{T}=0$
(iv) $\oint \frac{d Q}{T}=$ constant
(f) The absolute temperature of a perfectly blackbody is increased to twice its value. The rate of emission of energy per unit area will be
(i) 2 times
(ii) 4 times
(iii) 8 times
(iv) 16 times
(g) The equation of transverse wave is given by $y=20 \sin \pi(0.02 x-2 t)$, where x and t are in cm and sec respectively. The wavelength of the wave in cm will be
(i) 50
(ii) 100
(iii) 200
(iv) 5
(h) A string stretched at both ends emits harmonics given by the ratio
(i) $1: 2: 3$
(ii) $1: 3: 5$
(iii) $1: 2: 9$
(iv) unrelated
2. (a) Obtain an expression for thermal conductivity of an ideal gas on the basis of kinetic theory. Discuss its dependence on pressure and temperature. $3+2=5$
(b) State and prove Carnot's theorem. $2+3=5$
(c) What do you mean by pressure of radiation?
(d) Illustrate graphically the resultant path of two simple harmonic motions of same frequency but different amplitudes when the phase difference between them is (i) zero and (ii) $\pi / 4$.
3. (a) Give an account of Andrews ${ }^{2}$ experiment on carbon dioxide. Discuss the results obtained. What is the importance of these results in the liquefaction of gases?

$$
4+3+2=9
$$

Or
What are critical constants of a gas? Evaluate these constants in terms of the constants in van der Waals equation of state. Deduce the reduced equation of state and state the law of corresponding state.
$3+4+2=9$
(b) What is Brownian motion? Given an account of Einstein's theory of translational Brownian motion. Describe how the experimental study of this method helps to evaluate the value of Avogadro's number.
$1+6+2=9$
4. (a) Describe the working of a Carnot's reversible heat engine. Show how the work done in each operation represented on a $P-V$ diagram. Calculate the efficiency of this engine in terms of the temperature of the source and the sink. Why it cannot be realised in practice?

$$
2+2+4+1=9
$$

Or
Show that entropy remains constant in reversible process but increases in irreversible process. Derive an expression for change in entropy of a perfect gas. Calculate the change in entropy when 1 gm of water is heated from $0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$. [Take specific heat of water as 1 at all temperatures.]

$$
4+3+2=9
$$

(b) Derive Maxwell's thermodynamical relation

$$
\left(\frac{d S}{d V}\right)_{T}=\left(\frac{d P}{d T}\right)_{V}
$$

and establish Clausius-Clapeyron equation $\frac{d P}{d T}=\frac{L}{T\left(V_{2}-V_{1}\right)} . \quad 6+2=8$
5. Derive Planck's formula of energy distribution in blackbody radiation. From the Planck's radiation formula show that it reduces to Wien's law when $h \nu \gg k T$ and Rayleigh-Jeans law when $h v \ll k T$.

16)

6. (a) Deduce Newton's formula for velocity of propagation of longitudinal waves in a gaseous medium. What correction was suggested by Laplace and why? $3+3=6$
(b) What are damped and forced vibrations? Give the theory of forced vibration and discuss the condition of resonance.
$2+4+2=8$

Or

A light and flexible string stretched under tension over two bridges at a distance l apart is plucked at a distance a from one of the bridges. Find the displacement at a given point x at subsequent time. How do the harmonics present depend upon the point of plucking?

