Sotal No. of Printed Pages-11
2 SEM TDC STS M 1 (N/O)

2016
(May)

STATISTICS

(Major)
Course : 201

(Mathematics for Statistics-I)

The figures in the margin indicate full marks
for the questions
(New Course)
Full Marks : 48
Pass Marks : 14
Time : 2 hours

1. Choose the correct answer : $1 \times 6=6$
(a) If $A=\{1,2,\{3,4\}, 5\}$, then which of the following statements is incorrect?
(i) $\{3,4\} \in A$
(ii) $\{\{3,4\} \subset \subset A$
(iii) $\{3,4\} \subset A$
(iv) None of the above
(b) Which of the following is not equivalent to $A \subset B$?
(i) $A-B=\phi$
(ii) $A \cap B=A$
(iii) $A \cup B=B$
(iv) None of these
(c) If $S_{n+1} \geq S_{n}$, then the sequence $\left\{S_{n}\right\}$ is (i) monotonic increasing.
(ii) strictly increasing (iii) monotonic decreasing (iv) oscillatory
(d) According to $\lim _{n \rightarrow \infty}\left(u_{n}\right)^{\frac{1}{n}}=l>1$ means then st $\boldsymbol{\Sigma} \boldsymbol{u}_{\boldsymbol{n}}$ is
(i) Convergent
(ii) divergent
(iii) oscillatory
(iv) convergent to 1 only
(e) The first derivative of the function x^{8} w.r.t. another function x^{3} is
(i) $\frac{3}{8} x^{5}$
(ii) $\frac{8}{3} x^{5}$
(iii) $24 x^{5}$
(iv) None of the above
(f) The value of $\int_{0}^{\pi / 2} \sin ^{6} x d x$ is
(i) $5 \pi / 64$
(ii) $5 \pi / 32$
(iii) $5 / 32$
(iv) None of the above
2. (a) If S and T are subsets of real numbers, then show that $(S \cup T)^{\prime}=S^{\prime} \cup T^{\prime}$.
(b) Show that a set is closed iff its complement is open.
3. Answer any two of the following :
$6 \times 2=12$
(a) Define a bounded sequence. If $\left\{a_{n}\right\}$ is a bounded sequence such that $a_{n}>0$ for all $n \in N$, then show that

$$
\varliminf\left(\frac{1}{a_{n}}\right)=\frac{1}{\overline{\lim a_{n}}}, \text { if } \overline{\lim a_{n}}>0
$$

$$
1+5=6
$$

(Turn Over)

14)

(b) State Cauchy's first theorem on limits. Using the theorem; show that

$$
\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots+\frac{1}{\sqrt{n^{2}+n}}\right]=1
$$

$$
1+5=6
$$

(c) What is monotonic sequence? Show that the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{9}{a_{n}}\right), n \geq 1 \text { and } a_{1}>0
$$

converges to 3 .
4. (a) Show that the function $f(x)=x^{2}-6 x$ is
\therefore increasing for $x>3$.
(b) Show that $D^{n}\left(x^{n}\right)=n L$
5. Answer any two of the following :
(a) If $\sin y=x \cdot \sin (a+y)$, then prove that

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}
$$

15)

(b) If $z=\frac{x^{2} y^{2}}{x+y}$, then prove that

$$
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=3 z
$$

(c) State and prove Leibnitz theorem.
6. Answer any two of the following :
(a) If $f(x)=f(a+x)$, then prove that

$$
\int_{0}^{n a} f(x) d x=n \int_{0}^{a} f(x) d x
$$

(b) Evaluate :

$$
\int_{0}^{2} \int_{0}^{\sqrt{4+x^{2}}} \frac{d x d y}{4+x^{2}+y^{2}}
$$

(c) If $I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x$, then show that

$$
I_{n}+I_{n-2}=\frac{1}{n-1}
$$

and deduce the value of I_{5}.

(6)

(Old Course)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks": } 32}$
Time : 3 hours

1. State which of the following statements are true and which are false :
(a) A function of the type $f(x, y)=0$ is called implicit function.
(b) If $x=\phi(a), y=\psi(t)$, then

$$
\frac{d y}{d x}=\frac{d y}{d t} \frac{d t}{d x}
$$

(c) The value of

$$
\because \int_{0}^{\pi / 2} \sin ^{6} x d x
$$

is $\frac{5 \pi}{32}$.
(d) The union of two closed sets is not a closed set.
(e) The set of all integers is countable.
(f) Every bounded sequence has a limit
point.
(g) According to d'Alembert's ratio test, $\lim _{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=l<1$ means that the series
Σu_{n} is convergent.
2. (a) If $x^{3}+y^{3}-3 a x y=0$, then show that

$$
\begin{equation*}
\frac{d y}{d x}=\frac{a y-x^{2}}{y^{2}-a x} \tag{5}
\end{equation*}
$$

(b)

If $u=\frac{y}{z}+\frac{z}{x}+\frac{x}{y}$, then prove that

$$
\begin{equation*}
x \frac{\partial u}{\partial x}+y \frac{\partial \dot{u}}{\partial y}+z \frac{\partial u}{\partial z}=0 \tag{6}
\end{equation*}
$$

(c) Show that

$$
\text { (i) } D^{n}\left(x^{n}\right)=n!
$$

$$
\text { (ii) } D^{n}\left(\frac{1}{x+a}\right)=\frac{(-1)^{n} n!}{(x+a)^{n+1}}
$$

(d) Define maxima and minima of a function. Find for what values of x, the expression $f(x)=2 x^{3}-15 x^{2}+36 x+10$ is maximum and minimum respectively, and hence find the maximum and minimum values.

(8)

Or
(e) State Leibnitz theorem for the nth derivative of the product of two functions. Using the theorem or otherwise, show that $x^{2} y_{2}+x y_{1}+y=0$ for $y=a \cos (\log x)+b \sin (\log x)$.
$2+5=7$
3. (a) Show that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

Using this property or otherwise, prove that

$$
\int_{0}^{\pi / 2} \frac{\cos x-\sin x}{1+\sin x \cos x} d x=0
$$

(b) Prove that

$$
\int_{0}^{\pi / 2} \sin ^{2 m} x d x=\frac{(2 m)!}{\left\{2^{m} m!\right\}^{2}} \frac{\pi}{2}
$$

(c) Find:

$$
\int_{1}^{2} \int_{0}^{x} \frac{d x d y}{x^{2}+y^{2}}
$$

(10)

(ii) give an example to show that ($S \cap T)^{\prime}$ and ($S^{\prime} \cap T^{\prime}$) may not be equal.
$21 / 2+2^{1 / 2}=5$
(f) Define a field 'stating clearly its properties.

Or
(g) Define a set function. For the finitely additive set function f defined on the field F, prove that

$$
\begin{array}{r}
f(A \cup B)+f(A \cap B)=f(A)+f(B), \forall A, B \in F \\
1+4=5
\end{array}
$$

5. (a) Define convergent, divergent and oscillatory series. Give an example of a series used in statistical analysis, which is convergent.
(b) What is a monotonic sequence? If $x_{n}=\frac{3 n-1}{n+2}$, then prove that the sequence $\left\{x_{n}\right\}$ is monotone increasing
and bounded.
Or
(c) Show that the sequence $\left\{S_{n}\right\}$, defined by the recursion formula $S_{n+1}=\sqrt{3 S_{n}}$, $S_{1}=1$ converges to 3 .

11)

(d) Define Cauchy's root test and hence test for the convergence of the series where the general term is $\left(1+\frac{1}{\sqrt{n}}\right)^{-n^{3 / 2}}$. $2+2=4$
(e) Show that the series

$$
1+\frac{1}{2!}+\frac{1}{3!}+\frac{1}{4!}+\cdots
$$

is convergent.
(f) Show that the series

$$
\Sigma \frac{3.6 .9 . \cdots .3 n}{7: 10.13 . \cdots .(3 n+4)} x^{n}, x>0
$$

converges for $x \leq 1$ and diverges for $x>1$.
Or
(g) Prove that every absolutely convergent series is convergent. Show that for any fixed values of x, the series $\sum_{n=1}^{\infty} \frac{\sin n x}{x^{2}}$ is convergent.

