Total No. of Printed Pages-8

2 SEM TDC STS M 1

2013
(May)

STATISTICS
(Major)

Course : 201
(Mathematics for Statistics-I)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$
Time : 3 hours

The figures in the margin indicate full marks
for the questions

1. Choose the correct answer :
(a) If $|x|$ is the absolute value of a real number x, then
(i) $|x| \geq 0$
(ii) $|x| \leq 0$
(iii) $|x|<0$
(iv) None of the above
(b) The set $N=\{a, b, c, d\}$ of natural numbers is equivalent to
(i) $\{2,4,6,8\}$
(ii) $\{1,3,5,7\}$
(iii) $\left\{\frac{1}{2}, \frac{1}{3}, \frac{5}{4}, \frac{7}{5}\right\}$
(iv) $\{-1,-3,-5,-7\}$
(c) The function $f(x)=x^{2}, x \in(0, \infty)$ is
(i) strictly increasing
(ii) strictly decreasing
(iii) non-increasing
(iv) non-decreasing
function of x.
(d) The third derivative of the function $y=e^{a x}$ is
(i) $a^{3} e^{a x}$
(ii) $6 e^{a x}$
(iii) $3 a^{3} e^{a x}$
(iv) $e^{a x} / a^{3}$
(e) The value of $\int_{0}^{\frac{\pi}{2}} \sin ^{4} x d x$ is
(i) $\frac{3 \pi}{16}$
(ii) $\frac{3 \pi}{8}$
(iii) $\frac{3}{16}$
(iv) None of the above
(f) $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$ for all values of c such that
(i) $a<c<b$
(ii) $c>0$
(iii) $c>a$
(iv) $c<d$
(g) A convergent sequence is
(i) always bounded
(ii) bounded above only
(iii) bounded below only
(iv) neither bounded above nor bounded below
(h) According to d'Alembert's ratio test, $\operatorname{Lt}_{n \rightarrow \infty} \frac{u_{n+1}}{u_{n}}=l<1$ means that the series Σu_{n} is
(i) convergent
(ii) divergent
(iii) oscillatory
(iv) convergent, to 1 only
2. (a) Find the interval(s) in which the function $f(x)=2 x^{3}+3 x^{2}-12 x+1$ is increasing.
(b) If $L\{F(t)\}=f(s)$ is the Laplace Transform (LT) of the function $F(t)$, then find

$$
\begin{equation*}
L\left\{t^{n}+\frac{1}{6}\right\} \text { and } L\left\{e^{a t}\right\} \tag{4}
\end{equation*}
$$

(c) What are infimum and supremum of a set? Find infimum and supremum of the sets

$$
S_{1}=\{2,4,6,8\} \text { and } S_{2}=\left\{\frac{1}{n}, n \in N\right\}
$$

(d) Define convergent, divergent and oscillatory series. Give an example of a series used in statistical analysis, which is convergent.
3. (a) (i) State Leibnitz theorem for the nth derivative of the product of two functions. Using the theorem or otherwise, show that

$$
x^{2} y_{2}+x y_{1}+y=0
$$

for $y=a \cos (\log x)+b \sin (\log x) . \quad 2+5=7$
(ii) A random sample of size 400 is to be collected from two districts A and B. The cost of collecting m units from A and n units from B is given by the cost function

$$
f(m, n)=3 m^{2}+m n+2 n^{2}+10
$$

Use the method of Lagrange's multiplier to determine m and n in such a way that the cost is minimum.

Or

(b) (i) If $\sin y=x \sin (a+y)$, prove that

$$
\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}
$$

Also find partial derivatives $u_{x x}$, $u_{x y}$ and $u_{y y}$ for

$$
u=x^{3}+3 x^{2} y+3 x y^{2}+y^{3} \quad 4+3=7
$$

(ii) Define maxima and minima of a function $f(x)$. Find the points at which

$$
f(x)=x(x-1)^{2}
$$

assumes maximum and minimum value respectively.
4. (a) (i) Show that

$$
\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x
$$

Using this property or otherwise, prove that

$$
\int_{0}^{\frac{\pi}{2}} \frac{\cos x-\sin x}{1+\sin x \cos x} d x=0 \quad 2+5=7
$$

(ii) Define Jacobian of transformation and give an example of its application in statistics. If

$$
\begin{aligned}
& x=r \sin \theta \cos \phi \\
& y=r \sin \theta \sin \phi \\
& z=r \cos \theta
\end{aligned}
$$

then show that

$$
\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}=r^{2} \sin \theta
$$

Or

(b) (i) Show that

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{2}} \sin ^{m} x \cos ^{n} x d x \\
& \quad=\frac{1 \cdot 3 \cdot 5 \cdot \ldots(m-1) \cdot 1 \cdot 3 \cdot 5 \cdot \ldots(n-1)}{2 \cdot 4 \cdot 6 \cdot \ldots(m+n)} \cdot \frac{\pi}{2}
\end{aligned}
$$

when both m and n are even integers.
(ii) Evaluate :

$$
\int_{x=0}^{1} \int_{y=x}^{\sqrt{x}}\left(x^{2}+y^{2}\right) d x d y
$$

5. (a) When a set is said to be bounded? Prove that every infinite bounded set has a limit point.

$$
1+5=6
$$

(b) Define partition of a set. Mention the properties of partition of a set. $1+5=6$
6. (a) Define countable and uncountable sets. Show that the set R of real numbers in $[0,1]$ is uncountable but the set Q of rational numbers in $[0,1]$ is countable.
$2+6=8$
Or
(b) Define union and intersection of sets. Give example. If S and T are subsets of real numbers, then show that

$$
(S \cup T)^{\prime}=S^{\prime} \cup T^{\prime}
$$

$$
3+5=8
$$

7. (a) (i) Show that the sequence $\left\{a_{n}\right\}$ defined by

$$
a_{n+1}=\frac{1}{2}\left(a_{n}+\frac{9}{a_{n}}\right), n \geq 1, a_{1}>0
$$

is convergent and it converges to 3 .
$5+2=7$
P13-500/1049
(Turn Over)

181

(ii) Prove that a necessary condition for convergence of an infinite series Σu_{n} is that Lt $u_{n}=0$ as $n \rightarrow \infty$. Using the condition, comment on the convergence of the series

$$
\sum \frac{1}{n} \text { and } \sum \frac{n}{n+1}
$$

$$
\mathrm{Or}
$$

(b) (i) Prove that every bounded sequence has a limit point. If

$$
a_{n}=(-1)^{n} n, \quad n \in N
$$

then show that

$$
\lim a_{n}=-\infty \quad 5+2=7
$$

(ii) Give a comparison test for positive term series Σu_{n} and Σv_{n}. Test the convergence of the series

$$
\sum\left\{\left(n^{3}+1\right)^{\frac{1}{3}}-n\right\} \quad 3+4=7
$$

