Total No. of Printed Pages-6

2 SEM TDC CSc G 1

2013
(May)

COMPUTER SCIENCE
(General)

Course : 201
(Discrete Structures)
$\frac{\text { Full Marks : } 80}{\text { Pass Marks : } 32}$
Time: 3 hours
The figures in the margin indicate full marks for the questions

1. Select the correct answer :
(a) Consider the set $A=\{a, b\}$. Then, the family of all the subsets of A is called the - of A.
(i) universal set
(ii) non-empty set
(iii) power set
(iv) ordered set

21

(b) A function F is defined as - if it is both one-to-one and onto.
(i) injective
(ii) surjective
(iii) bijective
(iv) identity
(c) A relation R is said to be an equivalence relation if R is
(i) reflexive and symmetric
(ii) anti-symmetric
(iii) reflexive and transitive
(iv) reflexive, symmetric and transitive
(d) The equation $a_{T}^{3}+3 a_{r-1}+2 a_{r-2}$ is a recurrence relation of degree
(i) 1
(ii) 2
(iii) 3
(iv) 0
(e) The particular solution of the is \quad recurrence relation $a_{r}-5 a_{r-1}+6 a_{r-2}=1$
(i) $1 / 2$
(ii) 2
(iii) $1 / 3$
(iv) 1
(f) The function - is both upper and lower bound on $f(n)$.
(i) $f(n)=\Omega(g(n))$
(ii) $f(n)=\theta(g(n))$
(iii) $f(n)=O(g(n)$)
(iv) $f(n)=\omega(g(n))$
(g) A graph without cycles is called a/an
(i) path
(ii) simple path
(iii) simple cycle
(iv) acyclic
(h) Consider the following statements:
$p:$ Ramen is coward
\dot{q} : Ramen is lazy
r : Ramen is rich
The symbolic form of the statement is given below :
Ramen is coward or lazy but not rich is
(i) $(p \vee q) \wedge \sim r$
(ii) $(p \wedge q) \wedge r$
(iii) $(p \vee q) \vee r$
(iv) $p \wedge q \sim r$
2. Answer any four questions:
(a) State De Morgan's laws. Show that $p \Leftrightarrow q \quad$ and $\quad(p \Rightarrow q) \wedge(q \Rightarrow p)$ are equivalent.
(b) Define a spanning tree. Compute the value of the following prefix expression :

$$
-* 2 / 8,4,5
$$

(c) Find the value of x, if

$$
\begin{equation*}
(1 / 4!)+(1 / 5!)=(x / 6!) \tag{4}
\end{equation*}
$$

(d) Find the coefficient of x^{7} in the expression of $\left(1+3 x-2 x^{3}\right)^{10}$.
(e) Let the function $f: R \rightarrow R$ be defined by

$$
f(x)= \begin{cases}2 x+5, & x>9 \\ x^{2}-|x|, & x \in[-9,9] \\ x-4, & x<-9\end{cases}
$$

Determine $f(3)$.
4
(f) State the formal definition of summation. Give any three important properties involving summation.
$1+3=4$
3. Answer any eight questions :
(a) If

$$
A=\{1,4\}, B=\{4,5\}, C=\{5,7\}
$$

determine-
(i) $(A \times B) \cup(A \times C)$
(ii) $(A \times B) \cap(A \times C)$

$$
31 / 2+3^{1 / 2}=7
$$

(b) Define linear homogeneous and non-linear homogeneous recurrence relations. Solve the recurrence relation

$$
a_{r}-6 a_{r-1}+8 a_{r-2}=0 \quad 4+3=7
$$

P13-600/1056
(c) Define the common asymptotic notations used to analyse complexity of algorithms. For $f(x)=3 x^{3}+2 x^{2}+9$, show that $f(x)=O\left(x^{3}\right)$.
(d) Explain the various types of graphs with examples.
(e) Define Hamiltonian path and circuit. Prove or disprove-"A graph containing an Euler path must be cyclic". $4+3=7$
(f) State the techniques for binary tree traversal. Find the minimum spanning tree from the directed graph G given below :
$3+4=7$

(g) Use generating function to solve the recurrence relation

$$
\begin{equation*}
a_{n+2}-2 a_{n+1}+a_{n}=2^{n}, \quad a_{0}=2, a_{1}=1 \tag{7}
\end{equation*}
$$

(h) A tree has 3 vertices of degree 3 each. What is the number of leaves in this tree?

(6)

(i) How many integral solutions are there to the system of equations

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}+x_{5}=20 \\
\text { and } x_{1}+x_{2}=15 \\
\text { where } x_{k} \geq 0, k=1,2,3,4,5 ?
\end{gathered}
$$

(j) If x is a real number, then show that

$$
\begin{equation*}
\lfloor 2 x\rfloor=\lfloor x\rfloor+\left\lfloor x+\frac{1}{2}\right\rfloor \tag{7}
\end{equation*}
$$

2 SEM TDC CSc G-1

