OPTION—C

Paper: 60430

(LASER AND ITS APPLICATION)

- 1. Choose the correct answer from the following: 1×6=6
 - (a) The ratio of probability of spontaneous emission to probability of stimulated emission is proportional to
 - (i) v
 - (ii) v^2
 - (iii) v³
 - (iv) v^4
 - (b) What is the necessary and sufficient condition for a laser to start oscillating?
 - (i) Population inversion should be large
 - (ii) Losses should be zero
 - (iii) Threshold condition should be satisfied
 - (iv) Pumping should be strong
 - (c) The wavelength 6328 Å of He-Ne laser is due to transition from
 - (i) 3s-2p level
 - (ii) 3s-3p level
 - (iii) 2s-2p level

- (d) In case of fringes produced by coherent beams of equal amplitude, fringe visibility is equal to
 - (i) 1
 - (ii) O
 - (iii) 0·5
 - (iv) 2
- (e) If n_1 and n_2 be the indices of core and cladding respectively of an optical fibre, then
 - (i) $n_2 > n_1$
 - (ii) $n_2 \ge n_1$
 - (iii) $n_1 \ge n_2$
 - (iv) $n_1 > n_2$
- If the same beam of light is reflected back and forth through a medium, then its magnetic rotation
 - (i) increases
 - (ii) decreases
 - (iii) remains same
- 2. (a) What is population inversion? Discuss optical pumping as a method of achieving population inversion. Why is it necessary for stimulated emission?

- (b) Discuss the basic principle of laser action. What are the main components of a basic laser system?

 3+3=6
- (c) What are the essential conditions for laser oscillation? Derive an expression for longitudinal modes in a laser cavity.

2+4=6

Or

Discuss the threshold condition for laser oscillation. Show that gain per unit length at threshold

$$g = \alpha + \frac{1}{2L} \log_e \left(\frac{1}{R_1 R_2} \right)$$

where α is the total loss coefficient and the second term represents the transmission loss through the mirrors.

2+4=6

3. (a) Describe with suitable diagram the principle, construction and working of a ruby laser.

6

(b) Discuss the working of an ammoniabeam maser.

3

- 4. (a) What are spatial coherence and temporal coherence? The coherence length of sodium D line (λ = 5890 Å) is 2.5 m. Calculate the coherence time and spectral width of the line. 2+2+2=6
 - (b) Define visibility of fringes. Interference fringes of intensity 0.3 are formed by two light beams having intensities in the ratio 1:9. Show that the degree of coherence is only 50%.
- What are different classes of optical fibre? What is graded index fibre? What are the advantages of a graded index fibre over a step index fibre? Find the numerical aperture of a step index fibre when the refractive index of the core is 1.51 and that of the cladding is 1.47.

Or

Describe the structure of a typical optical fibre. What do you mean by core and cladding of an optical fibre? 5+2+2=9

6. What is Kerr effect? What is Kerr constant? Describe a Kerr cell and explain how it can be used as an electro-optic shutter.

2+1+3+3=9