6 SEM TDC PHY M 2

2017

(May)

PHYSICS

(Major)

Course: 602

(Condensed Matter Physics)

Full Marks: 60
Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed:

(a) A metal crystallizes with a face-centred cubic lattice. The edge of the unit cell is 408 pm. The diameter of the metal atom is

₩ 204 pm

(ii) 288 pm

(iii) 408 pm

(iv) 144 pm

(Choose the correct answer)

 $1 \times 6 = 6$

- (b) What is the coordination number of the HCP structure?
- (c) The effective number of free electrons in a completely filled band is zero.

(State True or False)

- (d) Write the relation between average kinetic energy of electrons in the ground state (\overline{E}_0) with Fermi energy in one-dimensional crystal.
- (e) The slope of the $\ln \sigma$ (σ is conductivity) versus 1/T plot is a measure of
 - (i) mobility
 - (ii) resistivity
 - (iii) band gap
 - (iv) None of the above

(Choose the correct answer)

- The Meissner effect in superconductor is a/an
 - (i) reversible process
 - (ii) irreversible process
 - (iii) isothermal process
 - (iv) adiabatic process

(Choose the correct answer)

- 2. (a) Calculate the efficiency of packing in the case of a metal crystal in simple cubic lattice.
 - (b) How energy levels of an atom become energy band in a solid?

2

- (c) The intrinsic carrier concentration in an Si sample is 1.5×10^{16} atoms/m³. It is doped with 10^{23} phosphorus atoms/m³. Determine its hole concentration and conductivity. Given electron mobility = $0.135 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$.
- 3. (a) Calculate the binding energy of an ionic crystal and obtain an expression for the Madelung constant. Evaluate Madelung constant for a linear ionic crystal.
 - (b) Find the angle between [111] and [110] directions of a cubic lattice.
- various forces existing between the atoms of a crystal. Explain the formation of stable bond using the potential energy versus interatomic distance curve.

 3+3=6

How does Bragg's reflection differ from ordinary reflection? What is Ewald construction? How does it help to interpret X-ray diffraction photographs?

1+2+3=6

(b) Prove that f.c.c. lattice is reciprocal to b.c.c. lattice.

9

5. (a) Write down the postulates of free electron gas model. A particle of mass m is confined in a field-free region between impermeable walls at x = 0 and x = L. Show that the stationary energy levels of the particles are given by

$$E_n = \frac{n^2 h^2}{8mL^2}$$
 2+5=7

Or

What is density of states? Show that the density of states at the Fermi surface is

$$D(E_F) = \frac{V}{2\pi^2} \left(\frac{2m}{\hbar^2}\right)^{3/2} E_F^{1/2}$$
1+6=7

(b) Find the relation between Fermi energy and average kinetic energy of an electron at absolute zero temperature.

- 6. (a.) State and explain the Bloch theorem.

 Discuss its importance in the band
 theory.

 2+3=5
 - (b) What is the nature of potential experienced by an electron in a crystal? Using the Kronig-Penney model, show that for $p \ll 1$, the energy of the lowest energy band is

$$E = \frac{\hbar^2 p}{ma^2}$$
 1+4=5

- 7. (a) What is meant by Fermi level? Sketch the Fermi level in p-type and n-type semiconductors. Show that the Fermi level of an intrinsic semiconductor lies at the middle of the band gap. 1+2+4=7
 - (b) State two basic characteristics of superconductors. Explain the difference between type-I and type-II superconductors using Meissner effect. 1+4=5