6 SEM TDC PHY M 1

2017

(May)

PHYSICS

(Major)

Course: 601

(Statistical Mechanics)

Full Marks: 60

Pass Marks: 24/18

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct option (any five): $1 \times 5 = 5$
 - (a) The statistical condition of equilibrium of two systems in thermal contact is

$$\mathcal{L} T_1 = T_2$$

(ii)
$$S_1 = S_2$$

(iii)
$$\Omega_1 = \Omega_2$$

(iv)
$$\frac{\partial}{\partial E_1} \log \Omega_1(E_1) = \frac{\partial}{\partial E_2} \log \Omega_2(E_2)$$

(b) The relative probability between two different energy states having difference 1.1×10^{-20} joules at 40 K temperature is

(i)
$$e^{-1}$$

(ii)
$$e^{-2}$$

(iv)
$$e^2$$

(c) If Z_1 , Z_2 , Z_3 are independent partition functions of a system, the total partition function of the combined system is

$$E = Z_1 + Z_2 + Z_3$$

(ii)
$$Z = Z_1 \cdot Z_2 \cdot Z_3$$

(iii)
$$\frac{1}{Z} = \frac{1}{Z_1} + \frac{1}{Z_2} + \frac{1}{Z_3}$$

- (iv) None of the above
- (d) In Bose-Einstein statistics, the number of particles condensing into ground state is

(iii)
$$\eta \left[1 - \left(\frac{T}{T_0}\right)^{3/2}\right]$$

(iv)
$$\eta \left[1-\left(\frac{T}{T_0}\right)^{1/2}\right]$$

	(e) The Fermi function $f(\varepsilon) = \frac{n(\varepsilon)}{g(\varepsilon)}$ has value	
	½, when	
	(i) $\varepsilon < \varepsilon_f$	
	(ii) $\varepsilon > \varepsilon_f$	
	(iii) $\varepsilon = \varepsilon_f$ at absolute zero	
	$(i\nu)$ $\varepsilon = \varepsilon_f$ at any temperature	
	(f) Which gas at absolute zero temperature	
	possesses energy and exerts pressure?	
	(i) Oxygen gas	
	## Photon gas	
	(iii) Electron gas	
	(iv) No gas	
2.	(a) Derive Liouville theorem.	6
	(b) Give thermodynamic interpretation of	
¥	(b) Give thermodynamic interpretation of the Lagrange's undetermined multi-	
	pliers appearing in the distribution laws.	6
3.	Derive Boltzmann relation between entropy	
	and probability.	5
*		
4	Express internal energy in terms of partition	
	function.	5
	Or	
	Establish the relation $S = kN \log 2 + \frac{3}{2} kT$	
	Establish the relation $S = kN \log Z + \frac{3}{2}kT$.	

5.	Distinguish	among	classic	al statistics,
	Fermi-Dirac	statistics	and	Bose-Einstein
*	statistics.			

3

What are the basic postulates used in Bose-Einstein statistics? Derive an expression for Bose-Einstein distribution law. 3+6=9

Or

What are fermions? Derive a distribution law for them. 3+6=9

7. Discuss the condition at which Bose-Einstein and Fermi-Dirac statistics reduces to Maxwell- Boltzmann statistics.

4

8, Apply Bose-Einstein statistics to the photon gas and derive Planck's law of blackbody radiation.

7

9. Bosons may condense at very low temperature. Discuss on the basis of statistical mechanics.

5

10. What is the cause of degeneracy pressure inside a white dwarf star? Explain the limit depending on which some stars become white dwarf and other become neutron star or black hole.