5 SEM TDC PHY M 4

2016

(November)

PHYSICS

(Major)

Course: 504

(Electronics)

Full Marks: 60

Pass Marks: 24 (Backlog) / 18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Answer the following as directed: $1\times6=6$

- (a) The ratio of $I_{r.m.s.}$ and $I_{d.c.}$ of a full-wave rectifier is
 - (i) 0.48
 - (ii) 1·11
 - (iii) 1·21
 - (iv) 1.57

(Choose the correct answer)

- (b) The probability of occupancy of the Fermi level at room temperature is
 - 岁 100%
 - (ii) 0%
 - (iti) 50%
 - (iv) 75%

(Choose the correct answer)

- (c) Which of the following specifications is not correct for a common-collector amplifier?
 - (i) High-input impedance
 - (ii) Low-output impedance
 - (iii) High-voltage gain
 - (iv) High-current gain

(Choose the correct answer)

- (d) What is the maximum theoretical efficiency of a class B push-pull transistor power amplifier?
- (e) Crystal oscillators are superior to L-C oscillators mainly because of their
 - (i) small crystal size
 - (ii) wide frequency range
 - (iii) high value of Q
 - (iv) better frequency stability (Choose the correct answer)

- What is the minimum number of gates required to implement the logic operation $X + \overline{X}Y$?
- 2. Answer the following questions: $2\times6=12$
 - (a) Intrinsic resistivity of silicon at 27 °C is $2 \cdot 8 \times 10^3$ Ω -m. If the hole and electron mobilities are 0.18 m²V⁻¹s⁻¹ and 0.38 m²V⁻¹s⁻¹, calculate the intrinsic carrier density of silicon.
 - (b) What is meant by mobility of a carrier?
 How does it depend upon temperature
 and doping concentration?
 - (c) Distinguish between class A and class B, amplifiers.
 - (d) An amplifier with negative feedback gives an output of 12.5 V with an input of 1.5 V. If the feedback is removed, the same output can be obtained for an input of 0.25 V. Calculate the feedback fraction.
 - (e) Show how an OP-AMP can be used as an integrator.
 - (f) Simplify the following Boolean equation:

$$X = (A + \overline{B})(B + C)B$$

- become energy bands in a solid? Sketch the energy band picture for. If an intrinsic. (ii) an n-type and (iii) a p-type semiconductor indicating the positions of the Fermi level, the donor or the acceptor levels. Distinguish between drift current and diffusion current in a semiconductor.

 2+3+2=7
 - (b) Explain the terms 'barrier potential' and 'depletion region' as applied to a p-n junction. Plot and explain the I-V characteristic of a junction diode. Also write an expression for diode current.

3+3+1=7

Or

Discuss the two mechanisms of junction breakdown. Draw the circuit diagram of a d.c. power supply and explain the action of Zener diode as voltage regulator.

3+1+3=7

- 4. (a) What is non-linear distortion? Mention any two methods of minimizing it. 1+2=3
 - (b) What is transistor biasing? Discuss the base resistor method of biasing. What are its advantages and disadvantages?

and the second of the second

Write down the hybrid equations of a transistor and define the h-parameters. What are the advantages of using the h-parameters? 1+3+2=6

- 5. (a) Explain the principle of operation of Wien bridge oscillator and find an expression for the frequency of oscillation.
 - (b) Discuss briefly the steps involved in fabricating a monolithic integrated circuit.
- 6. (a) Draw the logic diagram of a full adder.
 Write the Boolean expressions for sum and carry, and give its truth table.

2+1+2=5

5

- (b) Establish that the NAND gate is a universal gate.
- (c) Use K-map to simplify the following Boolean expression:

 $X = \overline{A}B + \overline{A}\overline{B}\overline{C} + AB\overline{C} + A\overline{B}\overline{C}$

Of $Y = A\overline{B} + B\overline{A}$.