$\Delta \lambda =$ ## 5 SEM TDC PHY M 3 2016 (November) **PHYSICS** (Major) Course: 503 ## (Atomic and Molecular Physics) Full Marks: 60 Pass Marks: 24 (Backlog) / 18 (2014 onwards) Time: 3 hours The figures in the margin indicate full marks for the questions | 1. | Fill | in the blanks (any five): | 1×5=5 | |--|------------|--|-----------| | | (a) | The value of spin quantum number an electron in hydrogen atom is | of b | | *, | <i>(b)</i> | The D-lines of sodium originate from transition. | m) (| | ž | (c)
- | Normal Zeeman effect occurs only atoms which have a total spin S equal | | | | (d) | For heavier atoms coupling holds | S. | | ************************************** | (6) | The procedure to achieve population is called | on | | | 4) | If $\Delta v = \frac{eB}{4\pi m}$ is the frequency shift in t | he | | | | Zeeman splitting of a spectrum, the the corresponding wavelength sh | | - 2. Answer any five of the following: $2\times5=10$ - (a) Find the possible values of j and m_j for states l=3 and $s=\frac{1}{2}$. - (b) State Bohr's postulates regarding the atomic model. - (c) Calculate the radius of the first Bohr orbit of hydrogen atom. Given $e=1.6\times10^{-19}$ C, $h=6.63\times10^{-34}$ joule-sec, $k=9\times10^{9}$ N m²/c² and $m=9.1\times10^{-31}$ kg. - (d) Discuss the essential requirements for producing laser action. - (e) Distinguish between Raman scattering and Rayleigh scattering. - (f) Calculate Lande's g-factor for s-electron. - 3. (a) Describe the different types of coupling in atom. Or The first member of Balmer series of hydrogen has a wavelength of 6563 Å. Calculate the wavelength of its (i) second order and (ii) third order. In which region of the e.m. spectrum does this series lie? 2+2+1=5 (b) Describe the principle, construction and working of Ruby laser with necessary diagram. Discuss the Sommerfeld theory of elliptical orbit of hydrogen atom and compare its results with those of Bohr's theory of circular orbits. Or What is Raman effect? Prove that to be Raman active, a molecular vibration or rotation must cause some change in molecular polarizability. Explain Raman lines intensity or polarization states from classical theory. 1+5+1=7 5. What are Stokes and anti-Stokes lines? In an experiment, the exciting line is at $\lambda = 5460$ Å and the Stokes line is at $\lambda = 5520$ Å. Find Raman shift and wavelength corresponding to anti-Stokes line. Or Discuss vibrational-rotational spectra of diatomic molecules with energy-level diagram. What are P and R branches in vibrational-rotational spectra? 5+2=7 What is anomalous Zeeman effect? In a normal Zeeman experiment, the Ca 4226 Å line splits into three lines separated by 0.25 Å in a magnetic field of 3 T. Determine e/m for the electron from these data. 2+4=6 What are the drawbacks of Rutherford's atomic model? Discuss briefly the success and failure of Bohr's atomic model. 2+2+2=6 7. Derive an expression for magnetic moment of orbiting electron. Why is orbital magnetic momentum (μ_l) oppositely directed to orbital angular momentum (P_l) ? 5+1=6 Or What is Larmor precession? An atomic dipole is subjected to very strong magnetic field B so that it begins to precess about the field. Calculate the frequency of Larmor precession. 1+5=6 - 8. Write short notes on (any three): 3×3=9 - (a) Stark effect - (b) Population inversion - (c) Space quantization - (d) Bohr's correspondence principle - (e) Einstein's coefficients - (f) Vector atom model