Total No. of Printed Pages-5

5 SEM TDC PHY M 2

2015

(November)

PHYSICS

(Major)

Course: 502

(Electrodynamics)

Full Marks: 60

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct answer:

 $1 \times 6 = 6$

- (a) The radiation pressure of the electromagnetic wave when it is totally reflected from the surface of substance is
 - (i) u
 - (ii) 2u
 - (iii) $\frac{1}{2}u$
 - (iv) $\frac{u}{c}$

(b) Two particles X and Y having equal charges after being accelerated through the same potential difference, enters a region of uniform magnetic field and describe circular paths of radii R_1 and R_2 respectively. The ratio of mass of X to that of Y is

(i)
$$\left(\frac{R_1}{R_2}\right)^{1/2}$$

(ii)
$$\frac{R_2}{R_1}$$

(iii)
$$\left(\frac{R_1}{R_2}\right)^2$$

(iv)
$$\frac{R_1}{R_2}$$

(c) A positively charged particle moving with a velocity \vec{V} enters a region of space having a constant magnetic induction \vec{B} . The particle will experience the largest deflecting force when the angle between vectors \vec{V} and \vec{B} is

(i)
$$\frac{E^2}{2\varepsilon_0} + \frac{B^2}{2\mu_0}$$

(ii)
$$\frac{1}{2}\varepsilon_{0}E^{2} + \frac{1}{2}\mu_{0}B^{2}$$

(iii)
$$\frac{E^2 + B^2}{C}$$

(iv)
$$\frac{1}{2}\varepsilon_0 E^2 + \frac{B^2}{2\mu_0}$$

(e) Brewster's law is

(i)
$$_1n_2 = \sin\theta_p$$
 (ii) $_1n_2 = \cos\theta_p$

(iii)
$$_1n_2 = \tan \theta_p$$
 (iv) $_1n_2 = \cot \theta_p$

(f) A cube is moving with a velocity
$$v$$
 in the direction parallel to one of its edges, expression for its volume is

(i)
$$L_0\sqrt{1-\frac{v^2}{c^2}}$$

(ii)
$$L_0^2 \sqrt{1 - \frac{v^2}{c^2}}$$

(iii)
$$L_0^3 \sqrt{1 - \frac{v^2}{c^2}}$$

(iv)
$$L_0^3 \left(1 - \sqrt{\frac{v^2}{c^2}} \right)$$

- 2. Answer any five of the following: $3\times5=15$
 - (a) What do you mean by polarisation of electromagnetic wave?
 - (b) Explain skin depth on the basis of electromagnetic theory. Write its expression for good conductor.
 - (c) What are the main postulates of Einstein's special theory of relativity?
 - (d) Deduce Maxwell's equation from Faraday's law of induction.
 - (e) Mention the characteristics of displacement current.
 - (f) In electromagnetic waves, what are the directions of electric vector \vec{E} and magnetic vector \vec{H} with respect to the propagation vector \vec{K} ?
 - (g) What is length contraction in relativistic mechanics?
- 3. Deduce the expression for Poynting theorem relating with Poynting vector.
- 4. Deduce Maxwell's first field equation in integral form and give its physical significance.

5

- 5. What do you mean by electromagnetic potential and gauge transformation? Deduce the differential form of Lorentz gauge. 2+3=5
- 6. Obtain the boundary conditions satisfied by electromagnetic field vector \overrightarrow{E} , on the plane interface between two media.
- 7. Show that speed of electromagnetic waves in an isotropic dielectric is less than the speed of electromagnetic waves in free space.
- 8. Derive an expression for the velocity of plane electromagnetic waves in a conducting medium.

Or

Derive Fresnel's equation for reflection and refraction of electromagnetic waves at a plane boundary separating two media when the incident wave is polarized with \vec{E} vector parallel to plane of incidence.

- 9. Describe Michelson-Morley experiment and discuss its results.
- 10. (a) What is relativistic energy? Prove the relation, $E^2 p^2C^2 = m_0^2C^4$.
 - (b) Explain whether the twin paradox in special theory of relativity has been resolved.

5

5

5

6