5 SEM TDC PHY M 1

2014

(November)

PHYSICS

(Major)

Course: 501

(Mathematical Physics)

Full Marks: 60

Pass Marks: 24

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option:

1×6=6

(a) A second-order differential equation is written as

$$m\frac{d^2y}{dt^2} = -ky - l\frac{dy}{dt} \quad (l > 0)$$

The solution will be underdamped or oscillatory, if

(i)
$$b^2 > \omega^2$$

(ii)
$$b^2 = \omega^2$$

(iii)
$$b^2 < \omega^2$$

$$\int_{-1}^{+1} x P_n \frac{dP_n}{dx} dx$$

is

(ii)
$$\frac{2}{2n+1}$$

(iii)
$$\frac{2n}{2n+1}$$

(c) The real part of an analytic function f(z) is $u(x, y) = x^2 - y^2$. f(z) is equal to

$$(i)$$
 z

$$K(1)$$
 z^2

(iii)
$$|z|^2$$

$$f(z) = \frac{e^z}{z^2 + a^2}$$

at all its poles is

(i)
$$\frac{\sin a}{a}$$

(ii)
$$-\frac{\sin a}{a}$$

(iii)
$$\frac{\cos a}{a}$$

(e) Which of the following identities is not correct?

(i)
$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$\sqrt{\pi^2 + \frac{\pi^2}{8}} = \sum_{n=1}^{\infty} \frac{1}{(2n-1)^2}$$

(iii)
$$\frac{\pi}{4} = \frac{1}{1.3} - \frac{1}{3.5} + \frac{1}{5.7} - \frac{1}{5.7}$$

(f) The value of the Fourier coefficient a_0 in the Fourier series of t^2 in the interval

$$-\pi < t < \pi$$
 is

(iii)
$$\frac{\pi^2}{3}$$

(iii)
$$\frac{\pi^2}{8}$$

2. (a) The rate at which a radioactive substance decays is proportional to the remaining number of atoms. If there are N_0 atoms at t=0, find the number at time t.

(b) Solve the initial value problem:
$$y'' - y = 0, y(0) = 4, y'(0) = -2$$

- Given $w = f(z) = z^2 + 3z$. Find u and v, and calculate the value of f at z = 1 + 3i. $\frac{1}{2} + \frac{1}{2} + 1 = 2$
- (d) Find the Maclaurin series of

$$f(z) = \frac{1}{1 + z^2}$$

- What are the conditions that a function must satisfy so that the Fourier series of the function converges uniformly?
 - What are Fourier sine and cosine series? 2
- 3. (a) Find a general solution of

$$y'' - 3y' + 2y = e^x$$

3

5

2

Or

Prove. that

3

$$(2n+1)xP_n = (n+1)P_{n+1} + nP_{n-1}$$

(b) Find the power series solution of the differential equation:

$$y'' + xy' + (x^2 + 2)y = 0$$

Or

Solve the initial value problem:

$$y'' + 2y' + 101y = 10.4e^{x}$$
, $y(0) = 1.1$, $y'(0) = -0.9$

Set up the equation of motion for forced (c) vibrations of a damped oscillator. Solve the equation of motion. Discuss the case of resonance and derive the form of the solution in the case of resonance.

4. (a) Prove that

$$P_n(x) = \frac{1}{2^n n!} \left(\frac{d}{dx}\right)^n (x^2 - 1)^n$$
 5

(b) Prove that

Prove that
$$\beta(m, n) = 2 \int_0^{\pi/2} (\sin \theta)^{2m-1} (\cos \theta)^{2n-1} d\theta$$

Find:

$$I = \int_0^\infty \frac{x^3 dx}{(1+x)^5}$$

(c) A sinusoidal voltage $E \sin \omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting periodic function

$$u(t) = \begin{cases} 0 & \text{if } -L < t < 0 \\ E \sin \omega t & \text{if } 0 < t < L \end{cases} p = 2L = \frac{2\pi}{\omega},$$

$$f(x) = \begin{cases} 0 & , & 0 < x < l \\ 1 & , & l < x < 2l \end{cases}$$

Expand f(x) in an exponential Fourier series of period 2L.

5

5

Prove that the function $u = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ satisfies Laplace's equation and determine the corresponding regular function u + iv.

Using Cauchy's integral formula, evaluate the integral $\oint \frac{z^2}{(z^2-1)} dz$ around

the unit circle with centre at (i) z = 1, (ii) z = -1 and (iii) $z = \frac{1}{2}$. 2+2+1=5

(2) Find the residue of the following functions at the mentioned poles: 2+2=4

functions at the
$$\frac{\cos z}{z}$$
 at $z = 0$

(ii) $\cot z$ at z=0