Total No. of Printed Pages-8

4 SEM TDC MTH G 1 (A)

2016

(May)

MATHEMATICS

(General)

Course: 401

A: (Linear Programming)

Full Marks: 50
Pass Marks: 20/15

Time: 21/2 hours

The figures in the margin indicate full marks for the questions

1. (a) উত্তল সংহতিৰ এটা উদাহৰণ দিয়া।
Give an example of convex set.

1

(b) ৰৈখিক প্ৰক্ৰমণ আৰ্হিৰ দুটা সীমাৱদ্ধতা লিখা।
Write two limitations of LP model.

(c) যি কোনো এটা প্ৰশ্নৰ উত্তৰ কৰা:

Answer any one question:

(i) ৰৈখিক প্ৰক্ৰমণ সমস্যা Ax = b, $x \ge 0$ ৰ সকলো ব্যৱহাৰ উপযোগী সংহতি এটা বন্ধ উত্তল সংহতি বুলি প্ৰমাণ কৰা।

Prove that the set of all feasible solutions to an LPP Ax = b, $x \ge 0$ is closed convex set.

(ii) এজন উৎপাদকে M_1 আৰু M_2 দুই প্ৰকাৰৰ মডেল তৈয়াৰ কৰে। প্ৰতি M_1 মডেলৰ বাবে গুৰি কৰিবলৈ 4 ঘণ্টা আৰু মিহি কৰিবলৈ 2 ঘণ্টা সময় লাগে। আনহাতে প্ৰতি M_2 মডেলৰ বাবে গুৰি কৰিবলৈ 2 ঘণ্টা আৰু মিহি কৰিবলৈ 5 ঘণ্টা সময় লাগে। উৎপাদকজনৰ দুটা গুৰি-কৰা আৰু তিনিটা মিহি-কৰা যন্ত্ৰ আছে। প্ৰতি গুৰি-কৰা যন্ত্ৰই সপ্তাহত 40 ঘণ্টা আৰু মিহি-কৰা যন্ত্ৰই সপ্তাহত 60 ঘণ্টা কাম কৰে। প্ৰতি M_1 আৰু M_2 মডেলৰ বাবে লাভ হয় ক্ৰমে 3 টকা আৰু 4 টকা। এক সপ্তাহত তৈয়াৰ কৰা গোৰ্টেইখিনি বজাৰত বিক্ৰি কৰা হয়। উৎপাদকজনে দুই প্ৰকাৰৰ মডেলৰ উৎপাদন শক্তি কেনেদৰে নিৰ্দিষ্ট কৰিব যাতে এক সপ্তাহত তেওঁৰ লাভ সৰ্বাধিক হয়?

A manufacturer produces two types of models M_1 and M_2 . Each M_1 model requires 4 hours of grinding and 2 hours of polishing; whereas each M_2 model requires 2 hours of grinding and 5 hours of polishing. The manufactures has 2 grinders and 3 polishers. Each grinder

works for 40 hours a week and each polisher works for 60 hours a week. Profit on an M_1 model is 73 and on an M_2 model is 74. Whatever is produced in a week is sold in the market. How should the manufacturer allocate his production capacity to the two types of models so that he may make the maximum profit in a week?

- (d) লৈখিক পদ্ধতিৰে যি কোনো এটাৰ সমাধান কৰা: 5
 Solve graphically any one of the following:
 - (i) গৰিষ্ঠকৰণ/Maximize

$$Z = 3x_1 + 4x_2$$

য'ত/subject to

$$4x_1 + 2x_2 \le 80$$
$$2x_1 + 5x_2 \le 180$$

আৰু/and
$$x_1, x_2 \ge 0$$

(ii) লখিষ্ঠকৰণ/Minimize $Z = 10x_1 + 8x_2$ য'ত/subject to

$$12x_1 + 7x_2 \le 42$$

$$5x_1 + 4x_2 \le 20$$

$$2x_1 + 3x_2 \ge 6$$

আৰু/and
$$x_1, x_2 \ge 0$$

2. (a) চিমপ্লেক্স পদ্ধতিৰে ৰৈখিক প্ৰক্ৰমণ সমস্যা সমাধানৰ পদ্ধতিটো কোনে উলিয়াইছিল?

1

Who developed the solution of LPP using simplex method?

(b) ৰৈখিক প্ৰক্ৰমণ সমস্যাৰ 'ব্যৱহাৰ উপযোগী' সমাধান আৰু 'আধাৰযুক্ত ব্যৱহাৰ উপযোগী' সমাধানৰ পাৰ্থক্য উল্লেখ কৰা।

2

Mention the difference between 'feasible solution' and 'basic feasible solution' in an LPP.

(c) চিমপ্লেক্স পদ্ধতি ব্যৱহাৰ কৰি তলৰ যি কোনো এটা ৰৈখিক প্ৰক্ৰমণ সমস্যা সমাধান কৰা :

7

Using simplex method, solve any *one* of the following LPP:

(i) গৰিষ্ঠকৰণ/Maximize

$$Z = 3x_1 + 2x_2$$

য'ত/subject to

$$x_1 + x_2 \le 4$$

$$x_1 - x_2 \le 2$$

আৰু/and $x_1, x_2 \ge 0$

(ii) লঘিষ্ঠকৰণ/Minimize $Z = -2x_1 + 3x_2$ য'ত/subject to

$$2x_1 - 5x_2 \le 7$$

$$4x_1 + x_2 \le 8$$

$$7x_1 + 2x_2 \le 16$$

আৰু/and

$$x_1, x_2 \ge 0$$

(d) (i) অথবা (ii) ৰ উত্তৰ কৰা:

Answer either (i) or (ii):

দ্বি-দশা পদ্ধতি ব্যৱহাৰ কৰি তলৰ ৰৈখিক প্ৰক্ৰমণ (i) সমস্যা সমাধান কৰা:

> Solve the following LPP using two-phase method:

লঘিষ্ঠকৰণ/Minimize

$$Z = x_1 + x_2$$

য'ত/subject to

$$2x_1 + x_2 \ge 4$$

$$x_1 + 7x_2 \ge 7$$

 $x_1, x_2 \ge 0$ আৰু/and

বিগ-M পদ্ধতিৰে তলৰ ৰৈখিক প্ৰক্ৰমণ সমস্যাটো (ii) সমাধান কৰা :

> Using Big-M method, solve the following LPP:

লঘিষ্ঠকৰণ/Minimize

$$Z = x_1 + 2x_2$$

ত/subject to

$$3x_1 + x_2 = 3$$

$$4x_1 + 3x_2 \ge 6$$

$$x_1 + 2x_2 \le 4$$

আৰু/and $x_1, x_2 \ge 0$

_									
3.	(a)	(a) যদি প্ৰাৰম্ভিক ৰৈখিক প্ৰক্ৰমণ এটাৰ i তম চলকৰ চিহ্ন অসীমিত হয়, তেনেহ'লে দ্বৈত-ৰূপৰ বাধ্যটো কি হ'ব ?							
		the <i>i</i> th variable in primal is incestricted in sign, then what about he dual constraint?							
	(b)	দ্বৈত প্ৰক্ৰমণৰ দুটা সুবিধা লিখা।							
		Write two advantages of duality.							
	(c)	যি কোনো এটা প্ৰশ্নৰ উত্তৰ কৰা :							
		Answer any <i>one</i> question : (i) তলৰ প্ৰাৰম্ভিক ৰৈখিক প্ৰক্ৰমণ সমস্যাটোৰ দৈত-ৰূপ উলিওৱা :							
	Obtain the dual problem of the following primal LP problem : ল্বিষ্ঠকৰণ/Minimize								
	$Z = x_1 + 2x_2$								
	য'ত/subject to								
		$2x_1 + 4x_2 \le 160$							
	$x_1 - x_2 = 30$								
		$x_1 \ge 10$							
আৰু/and $x_1, x_2 \ge 0$									
	\$	(ii) প্ৰমাণ কৰা যে, যদি কোনো প্ৰাৰম্ভিক সমস্যাৰ অপৰিসীমিত সমাধান থাকে, তেনেহ'লে দ্বৈত সমস্যাৰ হয় কোনো সমাধান নাথাকে বা অপৰিসীমিত সমাধান থাকিব।							
		Prove that if the primal problem has an unbounded solution, then the dual problem has either no solution							

or an unbounded solution.

Answer the following questions:

- (i) এটা পৰিবহণ সমস্যাক সমতুল্য পৰিবহণ সমস্যা বুলিলে কি বুজা? What do you mean by a balanced transportation problem?
- (ii) পৰিবহণ তালিকাৰ ফুৰুহাৰ সংজ্ঞা দিয়া।

 Define loop of a transportation table.
- (b) পৰিবহণ সমস্যাৰ গাণিতিক ৰূপ লিখা।
 Write the mathematical formulation of transportation problem.
- 5. যি কোনো এটা প্ৰশ্নৰ উত্তৰ কৰা :

8

2

Answer any one question:

(a) 'নিয়তম দৰ' পদ্ধতিৰ সহায়ত তলৰ পৰিবহণ সমস্যাটো সমাধান কৰা :

8

Solve the following transportation problem using 'least cost method':

3		গন্তব্যস্থান Destination				যোগান Supply
		S_{1}	S_2	S_3	S_4	a_i
মূল	O_1	1	2	1	4	30
Origin	O_2	3	3	2	1	50
	O_3	4	2	5	9	20
চাহিদা/De1	nand	20	40	30	10	100

- (b) (i) ভ'গেলৰ সন্নিধান ৰীতিৰ চমু টোকা লিখা।
 Write a short note on Vogel's approximation.
 - (ii) প্ৰমাণ কৰা যে, প্ৰত্যেক পৰিবহণ সমস্যাৰ এটা ব্যৱহাৰ উপযোগী সমাধান থাকে, য'ত দিয়া আছে

$$x_{ij} = \frac{a_i b_j}{M}$$
, $i = 1, 2, \dots, m; j = 1, 2, \dots, n$

আৰু
$$M = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$

Prove that there exists a feasible solution in each transportation problem, which is given by

$$x_{ij} = \frac{a_i b_j}{M}$$
, $i = 1, 2, \dots, m; j = 1, 2, \dots, n$

and
$$M = \sum_{i=1}^{m} a_i = \sum_{j=1}^{n} b_j$$
.
