3 SEM TDC PHY M 1

2015

(November)

PHYSICS

(Major)

Course: 301

(Optics

Full Marks: 60

Pass Marks: 24 (Backlog)/18 (2014 onwards)

Time: 3 hours

The figures in the margin indicate full marks for the questions

- 1. Choose the correct answer from the following: 1×6=6
 - (a) A double convex lens will minimize spherical aberration if the radii of curvature are in the ratio
 - (i) 1:2
 - (ii) 1:3
 - (iii) 1:4
 - (iv) 1:6

(b) The distance between the two plano-convex lenses in Huygens eyepiece is

(iii)
$$\frac{2}{3}f$$

(iv)
$$\frac{3}{2}f$$

- (c) How is the interference pattern in Young's double-slit experiment affected if sodium light is replaced by red light of the same intensity?
 - (i) The fringes will vanish
 - (ii) The fringes will become brighter
 - (iii) The fringe width will decrease
 - (iv) The fringe width will increase
- (d) Two coherent sources of intensity ratio 1:n are employed in an interference experiment. The ratio of intensities of the maxima and minima in the interference pattern is

(i)
$$\left(\frac{n+1}{n-1}\right)$$

(ii)
$$\left(\frac{n+1}{n-1}\right)^2$$

(iii)
$$\left(\frac{\sqrt{n}+1}{\sqrt{n}-1}\right)$$

(iv)
$$\left(\frac{\sqrt{n}+1}{\sqrt{n}-1}\right)^2$$

- (e) The half-intensity maximum in case of a single-slit diffraction pattern occurs when the following condition is satisfied
 - (i) $\sin \theta = 0.223 \frac{\lambda}{a}$
 - (ii) $\sin \theta = 0.443 \frac{\lambda}{a}$
 - (iii) $\sin \theta = 0.886 \frac{\lambda}{a}$
 - (ℓv) $\sin \theta = \frac{2\lambda}{a}$
 - (f) The Babinet's compensator may be used for production and analysis of
 - (i) linear polarization
 - (ii) circular polarization
 - (iii) elliptical polarization
 - (iv) All of the above
- 2. (a) What is an achromatic system? What is a perfect achromatic system? 1+1=2
 - (b) Can a prism combination be used as an achromat? What is the requirement for such a combination?

 1+1=2
 - (c) Why is it necessary to use a narrow source for Fresnel's biprism?
 - (d) How does colour appear in thin films? 2

- (e) If the distance between the rulings of a grating is made very large, what will be the effect observed?
- (f) What is normal spectrum? Is the spectrum produced by a prism normal?

 1+1+2
- 3. (a) Show that in Huygens eyepiece, both the minimization conditions for spherical and chromatic aberration are satisfied.
 - (b) What is the reason for the presence of coma in a lense? Derive an expression for Abbe's sine condition. Show that coma disappears for a lens satisfying Abbe's sine condition. 1+3+1=5
 - (c) Obtain the intensity distribution pattern for diffraction due to a single slit.

Or

What are absent spectra and ghost line in case of a grating?

(d) Lights of wavelengths 5000 Å and 5200 Å fall on a grating having 5000 lines/cm. If a lens of focal length 2 m is used to form spectra on a screen, find the distance between the lines in (i) the first order and (ii) the third order.

		7	
4.	(a)	How can the thickness of a thin film be	e.
*.	Vers	measured using interference?	5
	(b)	Two candles or two torches can never	
· * .		produce interference pattern. Explain.	2
	15	The dark region in the interference	
		pattern represents the destruction of	ú
		light energy. Does it mean that	ş
		interference is a violation of the	``
		conservation of energy principle?	3
	(d)	The convex surface (radius of curvature	
	1	400 cm) of a plano-convex lens rests on	2
	^ _T	a concave surface of 500 cm radius and	
	•	Newton's rings are viewed by reflected	
1		light of wavelength 5.9×10^{-5} cm.	
	+ * * * ;	Calculate the diameter of the 5th bright	
		ring seen.	4
	(e)	Explain analytically, why the fringes in	
	2.9	Fabry-Perot interferometer are very	
		narrow and the resolving power of the	7
		interferometer is very high.	5 -
_	A or	wer any two from the following:	3
J.			
	• •	What is optical activity of a medium?	
		What are dextrorotatory and levorotatory media? 2+2	=4
		101010111111	_
	(B)	State and prove Malus' law.	4
	(c)	Obtain the condition for elliptical	1
		polarization of light.	4