3 SEM TDC MTH G 1

2014

(November)

MATHEMATICS

(General)

Course: 301

[Group—A : Coordinate Geometry and Group—B : Analysis—I (Real Analysis)]

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP—A

(Coordinate Geometry)

SECTION-I

(2-Dimension)

1. (a) $ax^2 + 2hxy + by^2 = 0$ সমীকৰণৰ পৰা xy পদ অপসাৰণ কৰিবলৈ কি কৰিব লাগে লিখা। Write what should be done to remove xy term from the equation $ax^2 + 2hxy + by^2 = 0$. (b) মূলবিন্দু (2, 3) বিন্দুলৈ স্থানান্তৰ কৰিলে $\frac{x}{2} + \frac{y}{3} = 2$ সৰলৰেখাৰ ৰূপান্তৰিত সমীকৰণটো লিখা।

Write the transformed equation of the straight line $\frac{x}{2} + \frac{y}{3} = 2$ when the origin is transformed to the point (2, 3).

2

2

1

2

(c) $x^2 + 2\sqrt{3}xy - y^2 = 0$ সমীকৰণৰ পৰা xy পদটো অপসাৰণ কৰিবলৈ অক্ষদ্বয় ঘূৰাব লগীয়া কোণটো নিৰ্দ্ধাৰণ কৰা।

Find the angle through which the axes must be turned to remove the xy term from the equation $x^2 + 2\sqrt{3}xy - y^2 = 0$.

2. (a) $6x^2 - 5xy - 6y^2 + 14x + 5y + 4 = 0$ সমীকৰণে নির্দেশ কৰা সৰলবেখা দুডাল মূলবিন্দুৰ মাজেৰে পাৰহৈ যায়। সঁচা নে মিছা লিখা।

Straight lines represented by $6x^2 - 5xy - 6y^2 + 14x + 5y + 4 = 0$ pass through the origin. State true or false.

(b) দেখুওৱা যে $9x^2 + 24xy + 16y^2 = 0$ সমীকৰণে নিৰ্দেশ কৰা সৰলৰেখা দুডাল সমান্তৰাল।

Show that straight lines represented by $9x^2 + 24xy + 16y^2 = 0$ are parallel.

(c) দেখুওৱা যে $x^2 + 6xy + 9y^2 + 4x + 12y = 5$ সমীকৰণে এযোৰ সমান্তৰাল ৰেখা নিৰ্দেশ কৰে।

Show that the equation

$$x^2 + 6xy + 9y^2 + 4x + 12y = 5$$

represents a pair of straight lines.

(d) দেখুওৱা যে $ax^2 + 2hxy + by^2 = 0$ আৰু lx + my + n = 0 ৰেখাকেইডালে উৎপন্ন কৰা ত্ৰিভুজৰ কালি হ'ব

$$\frac{n^2\sqrt{h^2-ab}}{am^2-2hlm+bl^2}$$

4

Show that the area of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and lx + my + n = 0 is

$$\frac{n^2\sqrt{h^2-ab}}{am^2-2hlm+bl^2},$$

অথবা / Or

দেখুওৱা যে x+y+1=0 আৰু $(x+y)^2-3(x-y)^2=0$ ৰেখাকেইডালে এটা সমবাহু ত্রিভুজ উৎপন্ন কৰে।

Show that the lines x+y+1=0 and $(x+y)^2-3(x-y)^2=0$ form an equilateral triangle.

3. (a) শক্ত্
$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$
 ত
ধৰা হ'ল $\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} \neq 0$ আৰু $ab = h^2$.

শঙ্কুটোৰ নাম লিখা।

Let
$$\Delta = \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} \neq 0$$
 and $ab = h^2$, for the

1

conic $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$. Write the name of the conic.

- (b) y²-xy-2x²-5y+x-6=0 শঙ্কুৰ (1, -1)
 বিন্দৃত টনা স্পশ্কিডালৰ সমীকৰণ নিৰ্ণয় কৰা।
 Find the equation of the tangent at (1, -1) to the conic y²-xy-2x²-5y+x-6=0.
- (c) এটা শঙ্কুৰ ব্যাসৰ সংজ্ঞা লিখা। 1
 Write the definition of diameter of a conic.
- (d) দেখুভারা যে $7x^2 48xy 7y^2 20x + 140y + 300 = 0$ সমীকৰণে এটা পৰাবৃত্ত নির্দেশ কৰে। 3 Show that the equation $7x^2 48xy 7y^2 20x + 140y + 300 = 0$

represents a hyperbola.

Show that the sum of the squares of two conjugate semi-diameters of a conic is constant.

অথবা /Or

 $11x^2 - 4xy + 14y^2 - 58x - 44y + 71 = 0$ শঙ্কুৰ প্ৰকৃতি নিৰ্ণয় কৰা। লগতে ইয়াৰ কেন্দ্ৰ নিৰ্ণয় কৰা।

Determine the nature of the conic $11x^2-4xy+14y^2-58x-44y+71=0$. Also find the centre of the conic.

SECTION—II

(3-Dimension)

4. (a) x + 2y - 6z - 12 = 0 সমতলখনে অক্ষকেইডালত কৰা ছেদাংশ নিৰ্ণয় কৰা ।

1

2

Find the intercepts made by the plane x+2y-6z-12=0 on the axes.

(b) x + 2y + 2z - 3 = 0 সমতলৰ সমীকৰণক অভিলম্বৰূপত প্ৰকাশ কৰা।

Express the equation of the plane x+2y+2z-3=0 in normal form.

4

ে(c) (1, 2, -3) বিন্দুৰ মাজেৰে পাৰহৈ যোৱা আৰু (-1, 3, 4), (5, 2, -1) বিন্দু সংযোগী ৰেখাৰ অভিলম্ব হোৱা সমতলৰ সমীকৰণ নিৰ্ণয় কৰা।

Find the equation to the plane through the point (1, 2, -3) and normal to the straight line joining the points (-1, 3, 4) and (5, 2, -1).

অথবা / Or

$$\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$$
 ৰেখাই $x-2y+3z+4=0$ সমতলক ছেদ কৰা বিন্দুৰ স্থানাংক নিৰ্ণয় কৰা।

Find the coordinates of the point, where the line $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ meets the plane x-2y+3z+4=0.

(d)
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$$
 ৰেখাই $x-y+z=5$ সমতলৰ লগত কৰা ছেদ বিন্দুৰ পৰা (-1, -5, -10) বিন্দুলৈ দূৰত্ব নিৰ্ণয় কৰা।

Find the distance of the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x-y+z=5 from the point (-1, -5, -10).

1

2

5

(b) x+2y-3z=0 আৰু x+2y-3z-4=0 সমতল দুখনৰ মাজৰ নিমুতম দূৰত্ব নিৰ্ণয় কৰা। Find the shortest distance between the planes x+2y-3z=0 and x+2y-3z-4=0.

(c)
$$\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$$
 আৰু $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$ ৰেখা দুডালৰ মাজৰ নিমুতম দূৰত্ব নিৰ্ণয় কৰা।

Find the shortest distance between the lines $\frac{x-3}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$ and $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$

GROUP-B

(Analysis—I)
6. (a) যদি $y=\frac{1}{a-x}$ হয়, তেন্তে y_n ৰ মান লিখা।
If $y=\frac{1}{a-x}$, then write the value of y_n . 1

(b) যদি $f(x) = x^3$ হয়, তেন্তে বক্ৰৰ উপস্পৰ্শকৰ দৈৰ্ঘ্য 1 নিৰ্ণয় কৰা। If $f(x) = x^3$, then find the length of subtangent of the curve.

	•	
(c)	s = log sec ψ বক্ৰৰ যি কোনো বিন্দু (s, ψ) ত বক্ৰতা ব্যাসাৰ্ধ নিৰ্ণয় কৰা।	2
	Find the radius of curvature at any point (s, ψ) on the curve $s = \log \sec \psi$.	
(d)	যদি $y = \sin^2 x \cos^2 x$ হয়, তেন্তে y_n ৰ মান নিৰ্ণয়	
	কৰা।	3
·	If $y = \sin^2 x \cos^2 x$, then find the value	
	of y_n .	
(e)	মান নিৰ্ণয় কৰা :	3
	Evaluate:	
	$\lim_{x \to 0} \frac{\tan x - x}{x - \sin x}$	
	অথবা /Or	
	যদি $y=x^3\sin x$ হয়, তেন্তে y_n ৰ মান নিৰ্ণয় কৰা।	
	If $y = x^3 \sin x$, then find the value of y_n .	
(a)	এটা ফলন কেতিয়া এটা বন্ধ অন্তৰাল [a, b]ত	Đ.
. S	অৱকলনীয় হয় লিখা।	1
4	Write when a function is derivable in a	
415	closed interval [a, b].	
(b)	লাগ্ৰাঞ্জ উপপাদ্যৰ জ্যামিতিক ব্যাখ্যা লিখা।	2
	Write the geometrical interpretation of Lagrange mean value theorem.	ê e

.

(c) প্ৰমাণ কৰা যে যদি এটা ফলন f অন্তৰ [a, b] ত অনবিচ্ছিন্ন হয় আৰু $f(a) \neq f(b)$, তেন্তে f ফলনে f(a) আৰু f(b) ৰ মাজৰ সকলো মান লাভ কৰে।

Prove that if a function f is continuous on [a, b] and $f(a) \neq f(b)$, then it assumes every value between f(a) and f(b).

4

3

(d) $f(x) = x^2 - 5x + 6$, ফলনৰ [2, 3] অন্তৰালত ৰোলৰ উপপাদ্যৰ প্ৰয়োগ আলোচনা কৰা।

Discuss the applicability of Rolle's theorem to $f(x) = x^2 - 5x + 6$ in [2, 3].

অথবা /Or

 e^x ক মেক্লৰিনৰ উপপাদ্যৰ সহায়ত বিস্তাৰ কৰা, য'ত শেষৰ পদটো হ'ব লাগ্ৰাঞ্জ আকাৰৰ।

Expand e^x by Maclaurin's theorem with Lagrange form of remainder.

8. (a) যদি $f(x, y) = e^{x^2 + xy + y^2}$ হয়, তেন্তে $\frac{\partial f}{\partial x}$ নিণ্য়

If $f(x, y) = e^{x^2 + xy + y^2}$, then find $\frac{\partial f}{\partial x}$.

(b) যদি
$$f(x, y) = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
 হয়, তেন্তে দেখুওৱা

If
$$f(x, y) = \sin^{-1} \frac{x^2 + y^2}{x + y}$$
, then show that

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} = \tan f$$

অথবা / Or

যদি
$$u = \sin^{-1}\frac{x}{y} + \tan^{-1}\frac{y}{x}$$
 হয়, তেন্তে দেখুওৱা যে

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

If
$$u = \sin^{-1} \frac{x}{y} + \tan^{-1} \frac{y}{x}$$
, then show that

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = 0$$

9. (a)
$$\int_{-a}^{a} f(x) dx = 0$$
 হোৱাৰ চৰ্ত লিখা।

Write the condition when $\int_{-a}^{a} f(x) dx = 0$.

5

(b) মান निर्ণয় কৰা :

Evaluate:

$$\int_0^{\pi} x \log \sin x \, dx$$

মান নিৰ্ণয় কৰা : (c)

Evaluate:

$$\int_0^{\frac{\pi}{2}} \cos^6 x \, dx$$
অথবা / Or

$$y = \log\left(\frac{e^x - 1}{e^x + 1}\right)$$
 বক্ৰৰ 1 ৰ পৰা 2 লৈ দৈৰ্ঘ্য নিৰ্ণয়

কৰা।

Find the length of the curve $y = \log\left(\frac{e^x - 1}{e^x + 1}\right)$ from 1 to 2.