2 SEM TDC CSc G 1

2014

(May)

COMPUTER SCIENCE

(General)

Course: 201

(Discrete Structure)

Full Marks: 80
Pass Marks: 32

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Select the correct answer:

1×8=8

- (a) In a relation R, if the presence of (a, b) excludes the possibility of presence of (b, a), then R is said to be
 - (i) reflexive
 - (ii) transitive
 - (iii) symmetric
 - (iv) asymmetric

(b) Which of the following functions is the generating function of the sequence 1,
$$a$$
, a^2 , a^3 ,?

(i)
$$G(x) = \frac{1}{1-x}$$
, $|x| < 1$

(ii)
$$G(x) = \frac{1}{(1-x)^2}$$
, $|x| < 1$

(iii)
$$G(x) = \frac{x}{(1-x)^2}$$
, $|x| < 1$

(iv)
$$G(x) = \frac{1}{1-ax}$$
, $|ax| < 1$

- (c) The recurrence relation $a_n = 2a_{n-1}$ is a linear homogeneous relation with constant coefficients of degree
 - (i) 0
 - (ii) 1
 - (iii) 2
 - (iv) n
- (d) If for a given size the complexity is taken as the maximum complexity over all inputs of that size, then the complexity is called the
 - (i) best-case complexity
 - (ii) average-case complexity
 - (iii) worst-case complexity
 - (iv) expected complexity

- (e) A function $f(x) = a^x (a > 0)$ satisfying the law a' = a and $a^x \cdot a^y = a^{x+y}$ is called the function.
 - (i) exponential
 - (ii) logarithm
 - (iii) rational
 - (iv) irrational
- (f) A vertex of a graph of degree 1 is called
 - (i) isolated
 - (ii) pendent
 - (iii) adjacent
 - (iv) isomorphic
- (g) An algorithm that makes an optimal choice at each of its steps without regard to previous choices is known as —— algorithm.
 - (i) Kruskal's
 - (ii) Prim's
 - (iii) DFS
 - (iv) greedy
- (h) Let C(x) denote 'x is clever', S(x) denote 'x is successful'. The symbolic form of the sentence There are some students who are not clever' is

. 기명 v 1.

- (i) $\exists x (S(x) \land C(x))$
- (ii) $\exists x (] S(x) \land C(x))$
- (iii) $\exists x (S(x) \land \ C(x))$
- (iv) $\exists x (|S(x) \land |C(x))$

2. Answer any four questions:

- (a) Define proper subset. Prove that $A \cap (B-C) = (A \cap B) (A \cap C)$ 1+3
- (b) Define domain and range for a relation. The relation R on the set $\{1, 2, 3, 4, 5\}$ is defined by the rule $(x, y) \in R$ if 3 divides x y. Find the elements of R.

2+2=4

- (c) Discuss the various types of functions. 4
- (d) Discuss the important notations used for describing growth of functions.
- (e) What is a recurrence relation? Find the first four terms for the following recurrence relation:

 $a_k = 2a_{k-1} + k$, for all integers $k \ge 2$, $a_1 = 1$ 1+3=4

- (f) Prove that a simple graph with n vertices and k components cannot have more than $\frac{(n-k)(n-k+1)}{2}$ edges. 4
- 3. Answer any eight from the following:
 - (a) What is a power set? If $A = \{1, 2, 3\}$, $B = \{4, 5\}$, $C = \{1, 2, 3, 4, 5\}$, find (i) $A \times B$, (ii) $C \times B$ and (iii) $B \times B$. Prove that $(C \times B) (A \times B) = B \times B$ 1+6=7

(b) Find the general solution to the following non-linear recurrence relation:

$$a_n - 5a_{n-1} + 6a_{n-2} = 1$$

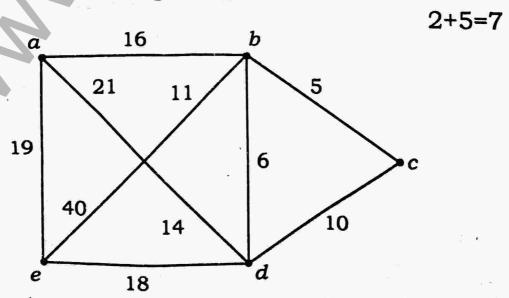
Apply the generating function technique to solve the following recurrence relation:

$$a_{n+2} + 4a_{n+1} + 4a_n = 0$$
; $a_0 = 1$, $a_1 = 0$
 $3\frac{1}{2} + 3\frac{1}{2} = 7$

- (c) Define primitive recursive function. Use the theorem on polynomial order to prove that $\frac{(x+1)(x+3)}{2}$ is $O(x^2)$. Write the value of (i) $\lfloor 8\cdot 3 \rfloor$ and (ii) $\lceil 6\cdot 0 \rceil$. 1+4+2=7
- (d) Define Hamiltonian path and circuit.

 Explain the traveling salesman problem with an example.

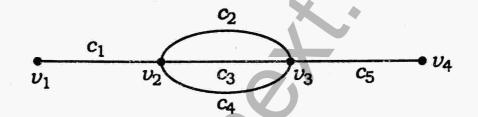
 2+5=7
- (e) Define spanning tree. Use Krushal's algorithm to find a minimum spanning tree for the weighted graph given below:



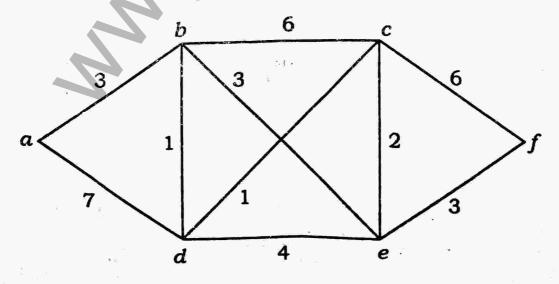
(f) Discuss BFS and DFS algorithms for spanning tree construction. Construct a binary tree whose in-order and pre-order traversal is given below: 4+3=7

In-order: 5, 1, 3, 11, 6, 8, 2, 4, 7 Pre-order: 6, 1, 5, 11, 3, 4, 8, 7, 2

(g) (i) Consider the following graph:



- (1) How many simple paths are there from v_1 to v_4 ?
- (2) How many paths are there from v_1 to v_4 ?
- (ii) Use Dijkstra's algorithm to find the shortest path between a and f in the weighted graph given below: 4



(h) What are universal and existential qualifiers? Define well-formed formula. Show that

$$\alpha = (P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \Rightarrow Q) \Rightarrow (P \Rightarrow R))$$

is a tautology. $2+2+3=7$

(i) How many integral solutions are there to the system of equations?

$$x_1 + x_2 + x_3 + x_4 + x_5 = 20$$
$$x_1 + x_2 = 15$$

where $x_k \ge 0$, k = 1, 2, 3, 4, 5.

(j) If the function $f: R \to R$ be defined by $f(x) = x^2 + 3$, find $f^{-1}(7)$ and $f^{-1}(19)$.