1 SEM TDC PHY M 1

2014

(November)

PHYSICS

(Major)

Course: 101

(Mechanics and Properties of Matter)

Full Marks: 80

Pass Marks: 32 (Backlog) / 24 (2014-15 Session)

Time: 3 hours

The figures in the margin indicate full marks for the questions

1. Choose the correct option from the following:

1×8=8

- (a) In case of a linear harmonic oscillator, the potential energy versus displacement curve will have the form of a/an
 - (i) straight line
 - (ii) circle
 - (iii) parabola
 - (iv) ellipse

- (b) Which of the following is not a fictitious force?
 - · (6) Coriolis force
 - Lorentz force
 - (iii) Centrifugal force
 - (iv) None of the above
- (c) What is the maximum angle of scattering for equal masses in laboratory system?
 - (i) π
 - (ij) $\frac{\pi}{2}$
 - (jil) 2n
 - (iv) $\frac{3\pi}{2}$
- (d) For a satellite of mass m in a circular orbit of radius r, the kinetic energy in terms of angular momentum can be written as
 - (i) $\frac{J^2}{2m}$
 - (ii) $\frac{J^2}{2mr}$
 - (iii) $\frac{J^2}{2mr^2}$
 - $(i\cancel{v}) \frac{J^2}{mr^2}$

In a rigid body, the internal potential (e) (i) gives rise to forces which perform work (ii) remains constant (iii) varies with time (iv) None of the above The Poisson's ratio of a material is 0.4. If (f)a force is applied to a wire of this material, there is a decrease of cross-sectional area by 2%. The percentage increase in its length is (i) 3% (ii) 2.5% (iii) 1% (iv) 0.5% For a rigid body, the number of degrees of freedom is (i)

(ii) 2

(iii) 3

(h)	An inertial frame is interpreted to stand for	
	(i) homogeneity of space	
, a j	(ii) isotropy of space	
· · · · · · · · · · · · · · · · · · ·	(iii) homogeneity of time	
	(iv) All of the above	
. (a)	Show that a frame of reference with	
	linear acceleration gives rise to a pseudoforce.	2
(b)	Define the centre of mass of a system of	
*- #	particles and hence show that the	
	centre of mass moves as if the total external force were acting on the entire	¥
*	mass of the system concentrated at the	
	centre of mass. 1+1	=2
(g)	What is radius of gyration?	2
(d)	What is a first integral of motion? How	
%	is it related to a conservation principle?	-2
		-2
(9)	What is the physical significance of moment of inertia?	2
Ø	What are stress and strain? How are they related to elastic modulus?	2
(9)	What is Galilean invariance?	2
(h)	What is virtual displacement?	2
4	1	- 1

- 3. (a) Discuss the limitations of Newton's laws of motion.
 - (b) Reduce a two-body problem to an equivalent one-body problem and hence obtain the expressions for angular momentum and kinetic energy. 3+2+2=7
 - Derive the condition for the conservation of the angular momentum of a system of particles.
 - (d) For a particle moving under the influence of a force

$$f(r) = -\frac{k}{r^2}$$

show that the equation of the orbit is a conic section.

Or

Obtain a relationship between the scattering angles in the laboratory and centre of mass coordinate system.

4. (a) Derive an expression for the twisting couple per unit twist of a wire and hence find the work done in twisting the wire.

4

6

(b) Show that the excess pressure inside a curved surface is given by

$$p = T\left(\frac{1}{r_1} + \frac{1}{r_2}\right)$$

where the symbols have their usual meanings.

6

(c) Obtain the relationship between surface tension and surface energy.

Or

Define tensile and compressive stress and strain. 2+2=4

- 5. (a) What is constraint? What are different types of constraint? 1+4=5
 - (b) What is d'Alembert's principle? Use this principle to prove that the horizontal acceleration required of an incline to prevent the sliding of a frictionless block is $a = g \tan \alpha$ where $\alpha = \text{inclin}/4 \text{tion}$ angle, g = acceleration due to gravity. 2+3=5

Or

What is cyclic or ignorable coordinate? Show that in absence of any non-potential forces, the generalized momentum corresponding to any cyclic coordinate is a conserved quantity. 2+3=5

(c) Derive the equation of motion for a particle moving under the influence of a central force

$$F = -\frac{k}{r^2}$$

(d) Set up the Lagrangian for a simple pendulum and obtain the equation of motion.